Asynchronous serioparallel execution of the loop
We define a notion of asynchronous sliding block map that can be realized by transducers labeled in A* × B*. We show that, under some conditions, it is possible to synchronize this transducer by state splitting, in order to get a transducer which defines the same sliding block map and which is labeled in A × Bk, where k is a constant integer. In the case of a transducer with a strongly connected graph, the synchronization process can be considered as an implementation of an algorithm of...
This note is about functions ƒ : Aω → Bω whose graph is recognized by a Büchi finite automaton on the product alphabet A x B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real...
We introduce and investigate Nondeterministically Bounded Modulo Counter Automata (NBMCA), which are two-way multi-head automata that comprise a constant number of modulo counters, where the counter bounds are nondeterministically guessed, and this is the only element of nondeterminism. NBMCA are tailored to recognising those languages that are characterised by the existence of a specific factorisation of their words, e. g., pattern languages. In this work, we subject NBMCA to a theoretically sound...
This paper introduces and discusses a modification of pushdown automata. This modification is based on two-sided pushdowns into which symbols are pushed from both ends. These pushdowns are defined over free groups, not free monoids, and they can be shortened only by the standard group reduction. We demonstrate that these automata characterize the family of recursively enumerable languages even if the free groups are generated by no more than four symbols.
New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and the last...
New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and...
Le point fixe d’une substitution injective uniforme de module sur un alphabet est examiné du point de vue du nombre de ses blocs distincts de longueur . Lorsque est minimal et de cardinal deux, nous construisons un automate pour la suite .
Soit une suite strictement croissante d’entiers reconnaissable par un automate fini. Nous montrons qu’une condition nécessaire et suffisante pour que l’ensemble normal associé a soit exactement est que l’un au moins des sommets qui reconnaît la suite soit précédé dans le graphe de l’automate par un sommet possédant au moins deux circuits fermés distincts. Cette condition peut se traduire quantitativement en disant que la suite doit être plus “dense” que toute suite exponentielle.