Canonical decomposition of catenation of factorial languages.
Circular splicing has been very recently introduced to model a specific recombinant behaviour of circular DNA, continuing the investigation initiated with linear splicing. In this paper we restrict our study to the relationship between regular circular languages and languages generated by finite circular splicing systems and provide some results towards a characterization of the intersection between these two classes. We consider the class of languages , called here star languages, which are closed...
Circular splicing has been very recently introduced to model a specific recombinant behaviour of circular DNA, continuing the investigation initiated with linear splicing. In this paper we restrict our study to the relationship between regular circular languages and languages generated by finite circular splicing systems and provide some results towards a characterization of the intersection between these two classes. We consider the class of languages X*, called here star languages, which are closed...
The paper deals with some classes of two-dimensional recognizable languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. For such classes we can solve some open questions related to unambiguity, finite ambiguity and complementation. Then we reformulate a necessary condition for recognizability stated by Matz, introducing a new complexity function. We solve an open question proposed by Matz,...
The paper deals with some classes of two-dimensional recognizable languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. For such classes we can solve some open questions related to unambiguity, finite ambiguity and complementation. Then we reformulate a necessary condition for recognizability stated by Matz, introducing a new complexity function. We solve an open question proposed by Matz,...
Two deterministic finite automata are almost equivalent if they disagree in acceptance only for finitely many inputs. An automaton A is hyper-minimized if no automaton with fewer states is almost equivalent to A. A regular language L is canonical if the minimal automaton accepting L is hyper-minimized. The asymptotic state complexity s∗(L) of a regular language L is the number of states of a hyper-minimized automaton for a language finitely different from L. In this paper we show that: (1) the class...
Two deterministic finite automata are almost equivalent if they disagree in acceptance only for finitely many inputs. An automaton A is hyper-minimized if no automaton with fewer states is almost equivalent to A. A regular language L is canonical if the minimal automaton accepting L is hyper-minimized. The asymptotic state complexity s∗(L) of a regular language L is the number of states of a hyper-minimized automaton for a language ...
We proceed our work on iterated transductions by studying the closure under union and composition of some classes of iterated functions. We analyze this closure for the classes of length-preserving rational functions, length-preserving subsequential functions and length-preserving sequential functions with terminal states. All the classes we obtain are equal. We also study the connection with deterministic context-sensitive languages.
Natural algorithms to compute rational expressions for recognizable languages, even those which work well in practice, may produce very long expressions. So, aiming towards the computation of the commutative image of a recognizable language, one should avoid passing through an expression produced this way. We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative image of a recognizable language. We also give a second modification of the algorithm...
Natural algorithms to compute rational expressions for recognizable languages, even those which work well in practice, may produce very long expressions. So, aiming towards the computation of the commutative image of a recognizable language, one should avoid passing through an expression produced this way. We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative image of a recognizable language. We also give a second modification of the algorithm...
Right (left, two-sided) extendable part of a language consists of all words having infinitely many right (resp. left, two-sided) extensions within the language. We prove that for an arbitrary factorial language each of these parts has the same growth rate of complexity as the language itself. On the other hand, we exhibit a factorial language which grows superpolynomially, while its two-sided extendable part grows only linearly.
Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi from words...
Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi...
In a previous paper, we have described the construction of an automaton from a rational expression which has the property that the automaton built from an expression which is itself computed from a co-deterministic automaton by the state elimination method is co-deterministic. It turned out that the definition on which the construction is based was inappropriate, and thus the proof of the property was flawed. We give here the correct definition of the broken derived terms of an...