Radix enumeration of rational languages
We prove that the function that maps a word of a rational language onto its successor for the radix order in this language is a finite union of co-sequential functions.
We prove that the function that maps a word of a rational language onto its successor for the radix order in this language is a finite union of co-sequential functions.
In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages.
Let Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ} be the language recognized by a formal series ϕ:Σ∗ → ℝ with isolated cut point λ. We provide new conditions that guarantee the regularity of the language Lϕ,λ in the case that ϕ is rational or ϕ is a Hadamard quotient of rational series. Moreover the decidability property of such conditions is investigated.
Let Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ} be the language recognized by a formal series ϕ:Σ∗ → ℝ with isolated cut point λ. We provide new conditions that guarantee the regularity of the language Lϕ,λ in the case that ϕ is rational or ϕ is a Hadamard quotient of rational series. Moreover the decidability property of such conditions is investigated.
Let Lϕ,λ = {ω ∈ Σ∗ | ϕ(ω) > λ} be the language recognized by a formal series ϕ:Σ∗ → ℝ with isolated cut point λ. We provide new conditions that guarantee the regularity of the language Lϕ,λ in the case that ϕ is rational or ϕ is a Hadamard quotient of rational series. Moreover the decidability property of such conditions is investigated.
In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-calledtime-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.
Si dà una formalizzazione dei moduli e delle reti modulari a struttura variabile. Si dimostra che per ogni automa finito a struttura variabile esiste una rete modulare a struttura variabile che lo simula. Si stabilisce il legame tra un automa a struttura variabile e l'automa a struttura variabile associato a una rete modulare a struttura variabile che lo simula.