On abelian repetition threshold
We study the avoidance of Abelian powers of words and consider three reasonable generalizations of the notion of Abelian power to fractional powers. Our main goal is to find an Abelian analogue of the repetition threshold, i.e., a numerical value separating k-avoidable and k-unavoidable Abelian powers for each size k of the alphabet. We prove lower bounds for the Abelian repetition threshold for large alphabets and all definitions of Abelian fractional power. We develop a method estimating the exponential...