Solid codes and disjunctive domains.
The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.
Vertex-degree parity in large implicit “exchange graphs” implies some EP theorems asserting the existence of a second object without evidently providing a polytime algorithm for finding a second object.
This paper sketches the state of the art in the application of mechanical theorem provers to the verification of commercial computer hardware and software. While the paper focuses on the theorem proving system ACL2, developed by the two authors, it references much related work in formal methods. The paper is intended to satisfy the curiosity of readers interested in logic and artificial intelligence as to the role of mechanized theorem proving in hardware and software design today. In addition,...
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an ω-language L(x1d49c;) accepted by a Büchi 1-counter automaton x1d49c;. We prove the following surprising result: there exists a 1-counter Büchi automaton x1d49c; such that the cardinality of the complement L(𝒜) − of the ω-language L(𝒜) is not determined...
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an ω-language L(𝒜) accepted by a Büchi 1-counter automaton 𝒜. We prove the following surprising result: there exists a 1-counter Büchi automaton 𝒜 such that the cardinality of the complement L(𝒜) − of the ω-language L(𝒜) is not determined by ZFC: (1) There is a model V1...