Displaying 101 – 120 of 180

Showing per page

Complexity results for prefix grammars

Markus Lohrey, Holger Petersen (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Resolving an open problem of Ravikumar and Quan, we show that equivalence of prefix grammars is complete in PSPACE. We also show that membership for these grammars is complete in P (it was known that this problem is in P) and characterize the complexity of equivalence and inclusion for monotonic grammars. For grammars with several premises we show that membership is complete in EXPTIME and hard for PSPACE for monotonic grammars.

Complexity results for prefix grammars

Markus Lohrey, Holger Petersen (2010)

RAIRO - Theoretical Informatics and Applications

Resolving an open problem of Ravikumar and Quan, we show that equivalence of prefix grammars is complete in PSPACE. We also show that membership for these grammars is complete in P (it was known that this problem is in P) and characterize the complexity of equivalence and inclusion for monotonic grammars. For grammars with several premises we show that membership is complete in EXPTIME and hard for PSPACE for monotonic grammars.

Complexity theoretical results on nondeterministic graph-driven read-once branching programs

Beate Bollig (2003)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Branching programs are a well-established computation model for boolean functions, especially read-once branching programs (BP1s) have been studied intensively. Recently two restricted nondeterministic (parity) BP1 models, called nondeterministic (parity) graph-driven BP1s and well-structured nondeterministic (parity) graph-driven BP1s, have been investigated. The consistency test for a BP-model M is the test whether a given BP is really a BP of model M . Here it is proved that the consistency test...

Complexity Theoretical Results on Nondeterministic Graph-driven Read-Once Branching Programs

Beate Bollig (2010)

RAIRO - Theoretical Informatics and Applications

Branching programs are a well-established computation model for boolean functions, especially read-once branching programs (BP1s) have been studied intensively. Recently two restricted nondeterministic (parity) BP1 models, called nondeterministic (parity) graph-driven BP1s and well-structured nondeterministic (parity) graph-driven BP1s, have been investigated. The consistency test for a BP-model M is the test whether a given BP is really a BP of model M. Here it is proved that the consistency...

Computing complexity distances between algorithms

Salvador Romaguera, Enrique A. Sánchez-Pérez, Oscar Valero (2003)

Kybernetika

We introduce a new (extended) quasi-metric on the so-called dual p-complexity space, which is suitable to give a quantitative measure of the improvement in complexity obtained when a complexity function is replaced by a more efficient complexity function on all inputs, and show that this distance function has the advantage of possessing rich topological and quasi-metric properties. In particular, its induced topology is Hausdorff and completely regular. Our approach is applied to the measurement...

Currently displaying 101 – 120 of 180