Radial level planarity testing and embedding in linear time.
We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series for which...
The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.
The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.
Soient et un sous-système. est une représentation en base d’une fonction du tore si pour tout point du tore, ses développements en base sont liés par le couplage aux développements en base de . On prouve que si est représentable en base alors , où . Réciproquement, toutes les fonctions de ce type sont représentables en base par un transducteur. On montre finalement que les fonctions du tore qui peuvent être représentées par automate cellulaire sont exclusivement les multiplications...
In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-calledtime-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.