Un algorithme sous-optimal pour construire un graphe -arête connexe de coût minimal
This paper discusses the fundamental combinatorial question of whether or not, for a given string α, there exists a morphism σ such that σ is unambiguous with respect to α, i.e. there exists no other morphism τ satisfying τ(α) = σ(α). While Freydenberger et al. [Int. J. Found. Comput. Sci. 17 (2006) 601–628] characterise those strings for which there exists an unambiguous nonerasing morphism σ, little is known about the unambiguity of erasing morphisms, i.e. morphisms that map symbols...
We give an explicit criterion for unavoidability of word sets. We characterize extendible, finitely and infinitely as well, elements in them. We furnish a reasonable upper bound and an exponential lower bound on the maximum leghth of words in a reduced unavoidable set of a given cardinality.
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
In the infinite Post Correspondence Problem an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word ω such that h(ω) = g(ω). This problem was shown to be undecidable by Ruohonen (1985) in general. Recently Blondel and Canterini (Theory Comput. Syst.36 (2003) 231–245) showed that this problem is undecidable for domain alphabets of size 105. Here we give a proof that the infinite Post Correspondence Problem is undecidable...
Un mot sturmien est la discrétisation d’une droite de pente irrationnelle. Un nombre de Sturm est la pente d’un mot sturmien qui est invariant par une substitution non triviale. Ces nombres sont certains irrationnels quadratiques caractérisés par la forme de leur développement en fraction continue. Nous donnons une caractérisation très simple des nombres de Sturm : un nombre irrationnel positif est de Sturm (de première espèce) si et seulement s’il est quadratique et à conjugué négatif.
Nous généralisons le théorème de Cobham ([2]), en démontrant qu'une partie infinie de ℕ est reconnaissable en base k (k entier strictement plus grand que un) et reconnaissable dans un système de numération associé à un nombre de Pisot unitaire (ayant une propriété arithmétique supplémentaire) si et seulement si elle est ultimement périodique.
Duplication is the replacement of a factor w within a word by ww. This operation can be used iteratively to generate languages starting from words or sets of words. By undoing duplications, one can eventually reach a square-free word, the original word's duplication root. The duplication root is unique, if the length of duplications is fixed. Based on these unique roots we define the concept of duplication code. Elementary properties are stated, then the conditions under which infinite duplication...
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.