Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Decimations and sturmian words

Jacques Justin, Giuseppe Pirillo (1997)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Defect theorem in the plane

Włodzimierz Moczurad (2007)

RAIRO - Theoretical Informatics and Applications

We consider the defect theorem in the context of labelled polyominoes, i.e., two-dimensional figures. The classical version of this property states that if a set of n words is not a code then the words can be expressed as a product of at most n - 1 words, the smaller set being a code. We survey several two-dimensional extensions exhibiting the boundaries where the theorem fails. In particular, we establish the defect property in the case of three dominoes (n × 1 or 1 × n rectangles).

Dejean's conjecture and letter frequency

Jérémie Chalopin, Pascal Ochem (2008)

RAIRO - Theoretical Informatics and Applications

We prove two cases of a strong version of Dejean's conjecture involving extremal letter frequencies. The results are that there exist an infinite 5 4 + -free word over a 5 letter alphabet with letter frequency 1 6 and an infinite 6 5 + -free word over a 6 letter alphabet with letter frequency 1 5 .

Dejean's conjecture holds for N ≥ 27

James Currie, Narad Rampersad (2009)

RAIRO - Theoretical Informatics and Applications

We show that Dejean's conjecture holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.

Density of critical factorizations

Tero Harju, Dirk Nowotka (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We investigate the density of critical factorizations of infinite sequences of words. The density of critical factorizations of a word is the ratio between the number of positions that permit a critical factorization, and the number of all positions of a word. We give a short proof of the Critical Factorization Theorem and show that the maximal number of noncritical positions of a word between two critical ones is less than the period of that word. Therefore, we consider only words of index one,...

Density of Critical Factorizations

Tero Harju, Dirk Nowotka (2010)

RAIRO - Theoretical Informatics and Applications

We investigate the density of critical factorizations of infinite sequences of words. The density of critical factorizations of a word is the ratio between the number of positions that permit a critical factorization, and the number of all positions of a word. We give a short proof of the Critical Factorization Theorem and show that the maximal number of noncritical positions of a word between two critical ones is less than the period of that word. Therefore, we consider only words of...

Digital search trees and chaos game representation*

Peggy Cénac, Brigitte Chauvin, Stéphane Ginouillac, Nicolas Pouyanne (2009)

ESAIM: Probability and Statistics

In this paper, we consider a possible representation of a DNA sequence in a quaternary tree, in which one can visualize repetitions of subwords (seen as suffixes of subsequences). The CGR-tree turns a sequence of letters into a Digital Search Tree (DST), obtained from the suffixes of the reversed sequence. Several results are known concerning the height, the insertion depth for DST built from independent successive random sequences having the same distribution. Here the successive inserted words...

Directed forests with application to algorithms related to Markov chains

Piotr Pokarowski (1999)

Applicationes Mathematicae

This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.

Directive words of episturmian words : equivalences and normalization

Amy Glen, Florence Levé, Gwénaël Richomme (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence...

Directive words of episturmian words: equivalences and normalization

Amy Glen, Florence Levé, Gwénaël Richomme (2008)

RAIRO - Theoretical Informatics and Applications

Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence...

Currently displaying 1 – 20 of 39

Page 1 Next