A factor-two approximation algorithm for two-dimensional phase unwrapping.
In this paper we address the two-dimensional knapsack problem with unloading constraints: we have a bin B, and a list L of n rectangular items, each item with a class value in {1,...,C}. The problem is to pack a subset of L into B, maximizing the total profit of packed items, where the packing must satisfy the unloading constraint: while removing one item a, items with higher class values can not block a. We present a (4 + ϵ)-approximation algorithm when the bin is a square. We also present (3 + ϵ)-approximation...
In this paper we present a dual approximation scheme for the class constrained shelf bin packing problem. In this problem, we are given bins of capacity , and items of different classes, each item with class and size . The problem is to pack the items into bins, such that two items of different classes packed in a same bin must be in different shelves. Items in a same shelf are packed consecutively. Moreover, items in consecutive shelves must be separated by shelf divisors of size . In...
In this paper we present a dual approximation scheme for the class constrained shelf bin packing problem. In this problem, we are given bins of capacity 1, and n items of Q different classes, each item e with class ce and size se. The problem is to pack the items into bins, such that two items of different classes packed in a same bin must be in different shelves. Items in a same shelf are packed consecutively. Moreover, items in consecutive shelves must be separated by shelf divisors of size...
A unit disk graph is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a unit coin graph or penny graph. It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a 3-approximation...
A unit disk graph is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a unit coin graph or penny graph. It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a 3-approximation...
In this note, we strengthen the inapproximation bound of O(logn) for the labeled perfect matching problem established in J. Monnot, The Labeled perfect matching in bipartite graphs, Information Processing Letters96 (2005) 81–88, using a self improving operation in some hard instances. It is interesting to note that this self improving operation does not work for all instances. Moreover, based on this approach we deduce that the problem does not admit constant approximation algorithms for connected...
This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...
This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...
The HP model is one of the most popular discretized models for attacking the protein folding problem, i.e., for the computational prediction of the tertiary structure of a protein from its amino acid sequence. It is based on the assumption that interactions between hydrophobic amino acids are the main force in the folding process. Therefore, it distinguishes between polar and hydrophobic amino acids only and tries to embed the amino acid sequence into a two- or three-dimensional grid lattice...
The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive...
Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed...
A vertex i of a graph G = (V,E) is said to be controlled by if the majority of the elements of the neighborhood of i (including itself) belong to M. The set M is a monopoly in G if every vertex is controlled by M. Given a set and two graphs G1 = () and G2 = () where , the monopoly verification problem (mvp) consists of deciding whether there exists a sandwich graph G = (V,E) (i.e., a graph where ) such that M is a monopoly in G = (V,E). If the answer to the mvp is No, we then consider...
A vertex i of a graph G = (V,E) is said to be controlled by if the majority of the elements of the neighborhood of i (including itself) belong to M. The set M is a monopoly in G if every vertex is controlled by M. Given a set and two graphs G1 = () and G2 = () where , the monopoly verification problem (mvp) consists of deciding whether there exists a sandwich graph G = (V,E) (i.e., a graph where ) such that M is a monopoly in G = (V,E). If the answer to the mvp is No, we then consider...
Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....
Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....
The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β-metric traveling salesman problem (Δβ-TSP), i.e., the TSP restricted to graphs satisfying the β-triangle inequality c({v,w}) ≤ β(c({v,u}) + c({u,w})), for some cost function c and any three vertices u,v,w. The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of 3β2/2 and is the best known algorithm for the Δβ-TSP, for 1 ≤ β ≤ 2. We provide a complete...
Given a weighted undirected graph G = (V,E), a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of G. Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...