### A fractional calculus approach to the mechanics of fractal media.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

The goal of this paper is to work out a thermodynamical setting for nonisothermal phase-field models with conserved and nonconserved order parameters in thermoelastic materials. Our approach consists in exploiting the second law of thermodynamics in the form of the entropy principle according to I. Müller and I. S. Liu, which leads to the evaluation of the entropy inequality with multipliers. As the main result we obtain a general scheme of phase-field models which involves an...

A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...

A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and Cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and Cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...