Displaying 81 – 100 of 149

Showing per page

On the solution of boundary value problems for sandwich plates

Igor Bock, Ivan Hlaváček, Ján Lovíšek (1986)

Aplikace matematiky

A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.

On the stability of multipolar elastic materials.

N. S. Wilkes (1979)

Stochastica

In 1964, Green and Rivlin [1, 2] proposed two non-standard theories of continua. Both papers concerned non-simple materials: the first considered deformation gradients of higher order than the first as dependent variables; and the second, which generalised the first, treated materials whose kinematic state was not completely detemined by the deformation function, but was also dependent upon some multipolar deformation functions. In both theories the existence of higher order stresses is fundamental.In...

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Quasistatic frictional problems for elastic and viscoelastic materials

Oanh Chau, Dumitru Motreanu, Mircea Sofonea (2002)

Applications of Mathematics

We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational...

Shape optimization of elastic axisymmetric plate on an elastic foundation

Petr Salač (1995)

Applications of Mathematics

An elastic simply supported axisymmetric plate of given volume, fixed on an elastic foundation, is considered. The design variable is taken to be the thickness of the plate. The thickness and its partial derivatives of the first order are bounded. The load consists of a concentrated force acting in the centre of the plate, forces concentrated on the circle, an axisymmetric load and the weight of the plate. The cost functional is the norm in the weighted Sobolev space of the deflection curve of radius....

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Currently displaying 81 – 100 of 149