Page 1 Next

Displaying 1 – 20 of 517

Showing per page

2D-1D dimensional reduction in a toy model for magnetoelastic interactions

Mouhcine Tilioua (2011)

Applications of Mathematics

The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.

A comparison of solvers for linear complementarity problems arising from large-scale masonry structures

Mark Ainsworth, L. Angela Mihai (2006)

Applications of Mathematics

We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields in both cases, with error estimates that are independent...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields...

A frictionless contact algorithm for deformable bodies*

Olivier Pantz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin structures...

A frictionless contact algorithm for deformable bodies

Olivier Pantz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article is devoted to the presentation of a new contact algorithm for bodies undergoing finite deformations. We only address the kinematic aspect of the contact problem, that is the numerical treatment of the non-intersection constraint. In consequence, mechanical aspects like friction, adhesion or wear are not investigated and we restrict our analysis to the simplest frictionless case. On the other hand, our method allows us to treat contacts and self-contacts, thin or non-thin structures...

A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory

Giacinto Porco, Giuseppe Spadea, Raffaele Zinno (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various...

A mimetic discretization method for linear elasticity

Lourenco Beirão Da Veiga (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

Currently displaying 1 – 20 of 517

Page 1 Next