On the asymptotic behaviour of a solution of a differential equation in a Hilbert space
The mistaken notion that consistency with fading memory should require uniqueness is refuted by citation of the sources. Indeed, insistence on uniqueness would exclude many examples from non-linear elasticity and would exclude materials capable of exhibiting hysteresis.
This paper deals with free-energy lower-potentials for some rate-independent one-dimensional models of isothermal finite elastoplasticity proposed in [1]. Extending the thermodynamic arguments of Coleman and Owen [3] to large deformations, the existence, non-uniqueness and regularity of free-energy as function of state are deduced rather than assumed. This approach, along with some optimal control techniques, enables us to construct maximum and minimum free-energy functions and a wide class of differentiable...
The paper deals with the problem of equilibrium stability of prismatic, homogeneous, intrinsically isotropic, viscoelastic beams subjected to the action of constant compressive axial force in the light of Lyapounov's stability theory. For a class of functional expressions of creeping kernels characteristic of no-aging viscoelastic materials of the hereditary type, solution of the governing integro-differential equations is given. Referring to polymeric materials of the PMMA type, numerical results...
Si considera un materiale viscoelastico lineare in cui la funzione di rilassamento è la somma di esponenziali. Lo stato di questi sistemi non è necessariamente assegnato dalla storia passata di , ma è sufficiente fornire il valore iniziale del tensore di deformazione , del tensore degli sforzi e delle sue derivate. Infine per questi materiali abbiamo ottenuto una espressione dell'energia libera come una funzione dello stato di dimensione finita .
Viene affrontato lo studio della inversione dell'equazione costitutiva (1.2) della viscoelasticità lineare, in funzione dei diversi spazi topologici su cui si può definire tale problema. In particolare si mostra che l'inversione di (1.2) ammette risposte completamente diverse al variare degli spazi di definizione, anche quando tali spazi vengono scelti sulla base delle topologie legate alle funzioni energia del problema considerato.