Homogenization of reinforced periodic one-codimensional structures
This paper is devoted to several applications of morphological analysis applied to the bounding of the overall behaviour of composite materials. In particular we focus our attention to the generalization of the Hashin-Shtrikmann variational principles to thermoelasticity.
In this paper we study bounds for the off-diagonal elements of the homogenized tensor for the stationary heat conduction problem. We also state that these bounds are sharp by proving a formula for the homogenized tensor in the case of laminate structures.
The Mori-Tanaka effective stiffness tensor is shown to be asymmetric in general. This tensor is proven to be symmetric for composites with isotropic inclusions, or with spherical reinforcements. Symmetry is also proven for the case of unidirectional fibers, of any shape and material. The Mori-Tanaka theory is shown to yield physically unacceptable predictions at the high concentration limit.
This paper outlines recent developments and prospects in the application of the continuum mechanics expressed intrinsically on the material manifold itself. This includes applications to materially inhomogeneous materials, physical effects which, in this vision, manifest themselves as quasi-inhomogeneities, and the notion of thermodynamical driving force of the dissipative progress of singular point sets on the material manifold with special emphasis on fracture, shock waves and phase-transition...
We extend the well-known reciprocal theorems of linear elasticity to unbounded domains. The theorems do not require that the elastic body is isotropic and homogeneous.
Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the simplified...