Periodic solutions of a piecewise linear beam equation damping and nonconstant load.
Let h ∈ L¹[0,1] ∩ C(0,1) be nonnegative and f(t,u,v) + h(t) ≥ 0. We study the existence and multiplicity of positive solutions for the nonlinear fourth-order two-point boundary value problem , 0 < t < 1, u(0) = u’(0) = u’(1) =u”’(1) =0, where the nonlinear term f(t,u,v) may be singular at t=0 and t=1. By constructing a suitable cone and integrating certain height functions of f(t,u,v) on some bounded sets, several new results are obtained. In mechanics, the problem models the deflection of...