The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We derive asymptotic formulas for the solutions of the mixed boundary value problem for the Poisson equation on the union of a thin cylindrical plate and several thin cylindrical rods. One of the ends of each rod is set into a hole in the plate and the other one is supplied with the Dirichlet condition. The Neumann conditions are imposed on the whole remaining part of the boundary. Elements of the junction are assumed to have contrasting properties so that the small parameter, i.e. the relative...
We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions
where the nonlinear term is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.
The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.
On se propose d’étudier la stabilité d’une poutre flexible homogène, encastrée à une extrémité. À l’autre extrémité est attachée une masse ponctuelle où on applique un moment proportionnel à la vitesse de déplacement angulaire. On montre par une analyse spectrale que le taux optimal de décroissance de l’énergie est déterminé par l’abscisse spectrale du générateur infinitésimal du semi-groupe associé au problème.
We study the stability of a flexible beam clamped at one end. A
mass is attached at the other end, where a control moment is
applied. The boundary control is proportional to the angular velocity
at the end. By spectral analysis, we prove that the optimal decay rate
of the energy is given by the spectrum of the generator of the
semigroup associated to the system.
Dans ce travail, nous étudions la propriété de base de Riesz et la stabilisation exponentielle pour une équation des poutres d’Euler-Bernoulli à coefficients variables sous un contrôle frontière linéaire dépendant de la position (resp. l’angle de rotation), de la vitesse et de la vitesse de rotation dans le contrôle force (resp. moment). Nous montrons qu’il existe une suite de fonctions propres généralisées qui forme une base de Riesz de l’espace d’énergie considéré, et qu’il y a stabilité exponentielle...
Dans ce travail, nous étudions une équation des poutres d’Euler-Bernoulli, on contrôle par combinaison linéaire de vitesse et vitesse de rotation appliquées à l’une des extrémités du système. Tout d’abord nous montrons que le problème est bien posé et qu’il y a stabilité uniforme sous certaines conditions portant sur les coefficients de feedback. Puis nous estimons le taux optimal de décroissance de l’énergie du système par la méthode de Shkalikov.
The paper deals with the problem of equilibrium stability of prismatic, homogeneous, intrinsically isotropic, viscoelastic beams subjected to the action of constant compressive axial force in the light of Lyapounov's stability theory. For a class of functional expressions of creeping kernels characteristic of no-aging viscoelastic materials of the hereditary type, solution of the governing integro-differential equations is given. Referring to polymeric materials of the PMMA type, numerical results...
We introduce a model of a vibrating multidimensional structure made of a n-dimensional body and a one-dimensional rod. We actually consider the anisotropic elastodynamic system in the n-dimensional body and the Euler-Bernouilli beam in the one-dimensional rod. These equations are coupled via their boundaries. Using appropriate feedbacks on a part of the boundary we show the exponential decay of the energy of the system.
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter and study its asymptotic behavior for large, as . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter . In order for this to be true the damping mechanism has to have the appropriate scale with respect to . In the limit as we obtain damped Berger–Timoshenko beam models...
We consider a dynamical one-dimensional
nonlinear von Kármán model for beams
depending on a parameter ε > 0 and study
its asymptotic behavior for t large, as ε → 0. Introducing appropriate damping
mechanisms we show that the energy of solutions
of the corresponding damped models decay
exponentially uniformly with respect to the
parameter ε. In order for this to be true the
damping mechanism has to have the appropriate
scale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on
Timoshenko beams with pointwise feedback controls and seek to obtain information
about the eigenvalues, eigenfunctions, Riesz-Basis-Property,
spectrum-determined-growth-condition, energy decay rate and various stabilities
for the beams. One major difficulty of the present problem is the non-simplicity
of the eigenvalues.
In fact, we shall indicate in this paper situations where the multiplicity of
the eigenvalues is at least two. We build all the...
Currently displaying 1 –
20 of
22