Nonlinear analysis of flexible beams undergoing large rotations via symbolic computations.
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...
In this paper we present several nonlinear models of suspension bridges; most of them have been introduced by Lazer and McKenna. We discuss some results which were obtained by the authors and other mathematicians for the boundary value problems and initial boundary value problems. Our intention is to point out the character of these results and to show which mathematical methods were used to prove them instead of giving precise proofs and statements.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
Two mathematical models of railway track oscillations are compared on the basis of numerical experiments.
Steady-state nonlinear differential equations govering the stem curve of a wind-loaded pine are derived and solved numerically. Comparison is made between the results computed and the data from photographs of a pine stem during strong wind. The pine breaking is solved at the end.
A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic ``springs''. The influence of external loads on the convergence properties is...