Loading [MathJax]/extensions/MathZoom.js
A dynamic system with structural damping described by partial differential equations is investigated. The system is first converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of the system operator are discussed. Finally, the well-posedness and the asymptotical stability of the system are obtained by means of a semigroup of linear operators.
The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...
The initial boundary value problem for a beam is
considered in the Timoshenko model. Assuming the analyticity
of the initial conditions, it is proved that the problem is
solvable throughout the time interval. After that, a numerical algorithm,
consisting of three steps, is constructed. The solution is
approximated with respect to the spatial and time variables using
the Galerkin method and a Crank–Nicholson type scheme. The system
of equations obtained by discretization is solved
by a version...
In this work, we consider dynamic frictionless contact with adhesion
between a viscoelastic body of the Kelvin-Voigt type and a
stationary rigid obstacle, based on the Signorini's contact conditions.
Including the adhesion processes modeled by the bonding field, a new
version of energy function is defined. We use the energy function
to derive a new form of energy balance which is supported by numerical
results. Employing the time-discretization,
we establish a numerical formulation and investigate...
The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.
In this paper, we are interested in the study of bifurcation solutions of nonlinear wave equation of elastic beams located on elastic foundations with small perturbation by using local method of Lyapunov-Schmidt.We showed that the bifurcation equation corresponding to the elastic beams equation is given by the nonlinear system of two equations. Also, we found the parameters equation of the Discriminant set of the specified problem as well as the bifurcation diagram.
Currently displaying 1 –
14 of
14