Displaying 341 – 360 of 684

Showing per page

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Numerical model of a pine in a wind

Jan Korbelář, Drahoslava Janovská (1999)

Applications of Mathematics

Steady-state nonlinear differential equations govering the stem curve of a wind-loaded pine are derived and solved numerically. Comparison is made between the results computed and the data from photographs of a pine stem during strong wind. The pine breaking is solved at the end.

Numerical modelling of semi-coercive beam problem with unilateral elastic subsoil of Winkler's type

Stanislav Sysala (2010)

Applications of Mathematics

A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic ``springs''. The influence of external loads on the convergence properties is...

Numerical simulation of blood flows through a porous interface

Miguel A. Fernández, Jean-Frédéric Gerbeau, Vincent Martin (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a model for a medical device, called a stent, designed for the treatment of cerebral aneurysms. The stent consists of a grid, immersed in the blood flow and located at the inlet of the aneurysm. It aims at promoting a clot within the aneurysm. The blood flow is modelled by the incompressible Navier-Stokes equations and the stent by a dissipative surface term. We propose a stabilized finite element method for this model and we analyse its convergence in the case of the Stokes...

Numerical study of acoustic multiperforated plates

Abderrahmane Bendali, M’Barek Fares, Sophie Laurens, Sébastien Tordeux (2012)

ESAIM: Proceedings

It is rather classical to model multiperforated plates by approximate impedance boundary conditions. In this article we would like to compare an instance of such boundary conditions obtained through a matched asymptotic expansions technique to direct numerical computations based on a boundary element formulation in the case of linear acoustic.

On a contact problem for a viscoelastic von Kármán plate and its semidiscretization

Igor Bock, Ján Lovíšek (2005)

Applications of Mathematics

We deal with the system describing moderately large deflections of thin viscoelastic plates with an inner obstacle. In the case of a long memory the system consists of an integro-differential 4th order variational inequality for the deflection and an equation with a biharmonic left-hand side and an integro-differential right-hand side for the Airy stress function. The existence of a solution in a special case of the Dirichlet-Prony series is verified by transforming the problem into a sequence of...

On a nonlinear equation of the vibrating string

Angela Iannelli, Giovanni Prouse, Alessandro Veneziani (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A nonlinear model of the vibrating string is studied and global existence and uniqueness theorems for the solution of the Cauchy-Dirichlet problem are given. The model is then compared to the classical D'Alembert model and to a nonlinear model due to Kirchhoff.

On an interaction of two elastic bodies: analysis and algorithms

Ivona Svobodová (2012)

Applications of Mathematics

The paper deals with existence and uniqueness results and with the numerical solution of the nonsmooth variational problem describing a deflection of a thin annular plate with Neumann boundary conditions. Various types of the subsoil and the obstacle which influence the plate deformation are considered. Numerical experiments compare two different algorithms.

On Asymptotic Theory of Beams, Plates and Shells

L.A. Aghalovyan, M.L. Aghalovyan (2016)

Curved and Layered Structures

Bases of asymptotic theory of beams, plates and shells are stated. The comparison with classic theory is conducted. New classes of thin bodies problems, for which hypotheses of classic theory are not applicable, are considered. By the asymptotic method effective solutions of these problems are obtained. The effectiveness of the asymptotic method for finding solutions of as static, as well as dynamic problems of beams, plates and shells is shown.

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface

Hans-Ullrich Wenk (1982)

Aplikace matematiky

The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...

Currently displaying 341 – 360 of 684