Displaying 61 – 80 of 88

Showing per page

On the solution of a generalized system of von Kármán equations

Jozef Kačur (1981)

Aplikace matematiky

A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.

On the solution of boundary value problems for sandwich plates

Igor Bock, Ivan Hlaváček, Ján Lovíšek (1986)

Aplikace matematiky

A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.

On the solution of one problem of the plate with ribs

Petr Procházka (1980)

Aplikace matematiky

In the present paper the convergence of the finite element method to the solution of the problem of a plate with ribs which are stiff against torsion in the sense of Vlasov is studied. According to the conclusions of a paper by the author and J. Haslinger it suffices to prove a density theorem (Theorem 2.1).

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez-Palencia (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε . The right hand side is such that the energy does not remain bounded as ε 0 . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez–Palencia (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...

On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation

F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík (2009)

Mathematical Modelling of Natural Phenomena

The contact between two membranes can be described by a system of variational inequalities, where the unknowns are the displacements of the membranes and the action of a membrane on the other one. We first perform the analysis of this system. We then propose a discretization, where the displacements are approximated by standard finite elements and the action by a local postprocessing. Such a discretization admits an equivalent mixed reformulation. We prove the well-posedness of the discrete problem...

Operational Methods in the Environment of a Computer Algebra System

Spiridonova, Margarita (2009)

Serdica Journal of Computing

This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.The presented research is related to the operational calculus approach and its representative applications. Operational methods are considered, as well as their...

Optimal control of a rotating body beam

Weijiu Liu (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose numerical...

Optimal Control of a Rotating Body Beam

Weijiu Liu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose ...

Optimal control of variational inequality with applications to axisymmetric shells

Ján Lovíšek (1987)

Aplikace matematiky

The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables.

Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints

Igor Bock, Ján Lovíšek (1987)

Aplikace matematiky

We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.

Optimal design of an elastic beam on an elastic basis

Jan Chleboun (1986)

Aplikace matematiky

An elastic simply supported beam of given volume and of constant width and length, fixed on an elastic base, is considered. The design variable is taken to be the thickness of the beam; its derivatives of the first order are bounded both above and below. The load consists of concentrated forces and moments, the weight of the beam and of the so called continuous load. The cost functional is either the H 2 -norm of the deflection curve or the L 2 -norm of the normal stress in the extemr fibre of the beam. Existence...

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek (1989)

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Currently displaying 61 – 80 of 88