Displaying 161 – 180 of 684

Showing per page

Dynamic von Kármán equations involving nonlinear damping: Time-periodic solutions

Eduard Feireisl (1989)

Aplikace matematiky

In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.

Effective energy integral functionals for thin films with bending moment in the Orlicz-Sobolev space setting

Włodzimierz Laskowski, Hôǹg Thái Nguyêñ (2014)

Banach Center Publications

In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...

Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting

Włodzimierz Laskowski, Hong Thai Nguyen (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...

Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability

F. Closa, F. Ziebert, E. Raphaël (2012)

Mathematical Modelling of Natural Phenomena

Motivated by recent experiments on the electro-hydrodynamic instability of spin-cast polymer films, we study the undulation instability of a thin viscoelastic polymer film under in-plane stress and in the presence of either a close by contactor or an electric field, both inducing a normal stress on the film surface. We find that the in-plane stress affects both the typical timescale of the instability and the unstable wavelengths. The film stability...

Eliciting harmonics on strings

Steven J. Cox, Antoine Henrot (2008)

ESAIM: Control, Optimisation and Calculus of Variations

One may produce the qth harmonic of a string of length π by applying the 'correct touch' at the node π / q during a simultaneous pluck or bow. This notion was made precise by a model of Bamberger, Rauch and Taylor. Their 'touch' is a damper of magnitude b concentrated at π / q . The 'correct touch' is that b for which the modes, that do not vanish at π / q , are maximally damped. We here examine the associated spectral problem. We find the spectrum to be periodic and determined by a polynomial of degree q - 1 ....

Currently displaying 161 – 180 of 684