The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller.
Let for . Let . Let . Let be a invertible bilipschitz function with , .
There exists positive constants and depending only on , , such that if and satisfies the...
In this paper we analyse the structure of approximate solutions to the compatible
two well problem with the constraint that the surface energy of the solution
is less than some fixed constant. We prove a quantitative estimate that can be seen as
a two well analogue of the Liouville theorem of Friesecke James Müller.
Let for .
Let . Let .
Let be a invertible bilipschitz
function with , .
There exists positive constants and depending only on σ, ,
such that if
and u satisfies...
In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....
In order to describe a solid which deforms smoothly in some region, but
non smoothly in some other region, many multiscale methods have recently
been proposed. They aim at coupling an atomistic model (discrete
mechanics) with a macroscopic model
(continuum mechanics).
We provide here a theoretical ground for such a coupling in a
one-dimensional setting. We briefly study the general case of a convex
energy, and next concentrate on
a specific example of a nonconvex energy, the Lennard-Jones case....
We give results for the approximation of a laminate with
varying volume fractions for multi-well energy minimization
problems modeling martensitic crystals that
can undergo either an orthorhombic
to monoclinic or a cubic to tetragonal transformation.
We construct energy minimizing sequences of deformations which satisfy
the corresponding boundary condition, and we
establish a series of error bounds in terms of the elastic energy
for the approximation of the limiting macroscopic
deformation and...
Currently displaying 1 –
7 of
7