Page 1

Displaying 1 – 7 of 7

Showing per page

On a 3D-Hypersingular Equation of a Problem for a Crack

Samko, Stefan (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.

On the change of energy caused by crack propagation in 3-dimensional anisotropic solids

Martin Steigemann, Maria Specovius-Neugebauer (2014)

Mathematica Bohemica

Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...

Currently displaying 1 – 7 of 7

Page 1