Page 1

Displaying 1 – 13 of 13

Showing per page

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations16 (2003) 1039–1064; Pego and Quintero, Physica D132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Currently displaying 1 – 13 of 13

Page 1