The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the decay in time of solutions of a symmetric regularized-long-wave equation and we show that under some restriction on the form of nonlinearity, the solutions of the nonlinear equation have the same long time behavior as those of the linear equation. This behavior allows us to establish a nonlinear scattering result for small perturbations.
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ()).
In according to a recent thermodynamic theory proposed by G. Grioli, we consider the growth of acceleration waves in a non viscous fluid. We determine the solutions for the growth of a plane or spherical wave advancing into the fluid in mechanical but not in thermal equilibrium.
In according to a recent thermodynamic theory proposed by G. Grioli we consider the growth of acceleration waves in a non viscous fluid. We determine the solutions for the growth of a plane or spherical wave advancing into the fluid in mechanical but not in thermal equilibrium.
Il a été établi par H. Lewy (1952) qu’une surface libre hydrodynamique qui est au moins dans un voisinage d’un point à la surface libre, est automatiquement , éventuellement dans un voisinage plus petit de . Ce résultat local est un exemple qui précédait la théorie dévelopée par D. Kinderlehrer, L. Nirenberg et J. Spruck (1977 - 79) démontrant que dans beaucoup de cas, des surfaces libres ne peuvent pas être d’une régularité arbitraire, et en particulier ils existent tels que, si la surface...
Nous considérons dans ce travail l’écoulement d’un fluide dans un canal plat avec un obstacle au fond. Cet obstacle génère une surface libre qui n’est plus horizontale, comme c’est le cas sans obstacle. Nous montrons que, dans le cas sur critique, si l’obstacle n’est pas trop élevé, il y a une solution et une seule. Nous donnons des indications pour le cas sous critique et pour le problème numérique.
Currently displaying 1 –
15 of
15