Evaporation of Sessile Water Droplets in Presence of Contact Angle Hysteresis
In this paper we present a theory describing the diffusion limited evaporation of sessile water droplets in presence of contact angle hysteresis. Theory describes two stages of evaporation process: (I) evaporation with a constant radius of the droplet base; and (II) evaporation with constant contact angle. During stage (I) the contact angle decreases from static advancing contact angle to static receding contact angle, during stage (II) the contact...
Evaporation-driven Contact Angles in a Pure-vapor Atmosphere : the Effect of Vapor Pressure Non-uniformity
A small vicinity of a contact line, with well-defined (micro)scales (henceforth the “microstructure”), is studied theoretically for a system of a perfectly wetting liquid, its pure vapor and a superheated flat substrate. At one end, the microstructure terminates in a non-evaporating microfilm owing to the disjoining-pressure-induced Kelvin effect. At the other end, for motionless contact lines, it terminates in a constant film slope (apparent contact...
Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids