A study of the waves and boundary layers due to a surface pressure on a uniform stream of a slightly viscous liquid of finite depth.
Page 1
Bandyopadhyay, Arghya (2006)
Journal of Applied Mathematics
Douglas, Craig C., Haase, Gundolf, Iskandarani, Mohamed (2003)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
F. Flori, P. Orenga, M. Peybernes (2008)
Annales de l'I.H.P. Analyse non linéaire
Molotkov, L.A. (2005)
Zapiski Nauchnykh Seminarov POMI
Karel Švadlenka (2012)
Pokroky matematiky, fyziky a astronomie
C. M. I. Olivier Guès, Guy Métivier, Mark Williams, Kevin Zumbrun (2006)
Annales scientifiques de l'École Normale Supérieure
Molotkov, L.A. (2005)
Zapiski Nauchnykh Seminarov POMI
Bernard Di Martino, Pierre Orenga (1998)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Debnath, Lokenath, Guha, Uma B., Basu, Manjusri (1990)
Journal of Applied Mathematics and Stochastic Analysis
Boussinesq, J. (1872)
Journal de Mathématiques Pures et Appliquées
O. K. Matar, G. M. Sisoev, C. J. Lawrence (2008)
Mathematical Modelling of Natural Phenomena
We study pressure-driven, two-layer flow in inclined channels with high density and viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics. Two distinguished limits are considered: where the viscosity ratio is small with density ratios of order unity, and where both density and viscosity ratios are small. The evolution equations account for the presence of...
В.М. Бабич (1988)
Zapiski naucnych seminarov Leningradskogo
Page 1