On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions
In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity polynomially increasing with a scalar quantity that evolves according to an evolutionary convection diffusion equation with the right hand side that is merely -integrable over space and time. We also formulate a conjecture concerning regularity...