Page 1 Next

Displaying 1 – 20 of 106

Showing per page

3D monolithic finite element approach for aero-thermics processes in industrial furnaces⋆

E. Hachem, E. Massoni, T. Coupez (2011)

ESAIM: Proceedings

We consider in this paper a mathematical and numerical model to design an industrial software solution able to handle real complex furnaces configurations in terms of geometries, atmospheres, parts positioning, heat generators and physical thermal phenomena. A three dimensional algorithm based on stabilized finite element methods (SFEM) for solving the momentum, energy, turbulence and radiation equations is presented. An immersed volume method (IVM) for thermal coupling of fluids and solids is introduced...

A continuity property for the inverse of Mañé's projection

Zdeněk Skalák (1998)

Applications of Mathematics

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F ( X ) , and P 0 an orthogonal projection in H of rank greater than or equal to 2 d F ( X ) + 1 . For every δ > 0 , there exists an orthogonal projection P in H of the same rank as P 0 , which is injective when restricted to X and such that P - P 0 < δ . This result follows from Mañé’s paper. Thus the inverse ( P | X ) - 1 of the restricted mapping P | X X P X is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...

A Note on an Application of the Lasota-York Fixed Point Theorem in the Turbulent Transport Problem

Tomasz Komorowski, Grzegorz Krupa (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes...

A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence

Cédric Galusinski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to establish, from a mathematical point of view, the limit α → +∞ in the system i t E + ( . E ) - α 2 × × E = - | E | 2 σ E , where E : 3 3 . This corresponds to an approximation which is made in the context of Langmuir turbulence in plasma Physics. The L2-subcritical σ (that is σ ≤ 2/3) and the H1-subcritical σ (that is σ ≤ 2) are studied. In the physical case σ = 1, the limit is then studied for the H 1 ( 3 ) norm.

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An upper bound on the attractor dimension of a 2D turbulent shear flow with a free boundary condition

Mahdi Boukrouche, Grzegorz Łukaszewicz (2005)

Banach Center Publications

We consider a free boundary problem of a two-dimensional Navier-Stokes shear flow. There exist a unique global in time solution of the considered problem as well as the global attractor for the associated semigroup. As in [1] and [2], we estimate from above the dimension of the attractor in terms of given data and the geometry of the domain of the flow. This research is motivated by a free boundary problem from lubrication theory where the domain of the flow is usually very thin and the roughness...

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Currently displaying 1 – 20 of 106

Page 1 Next