Page 1

Displaying 1 – 2 of 2

Showing per page

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...

Currently displaying 1 – 2 of 2

Page 1