Page 1

Displaying 1 – 2 of 2

Showing per page

Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations

William Layton, Nathaniel Mays, Monika Neda, Catalin Trenchea (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an uncoupled, modular regularization algorithm for approximation of the Navier-Stokes equations. The method is: Step 1.1: Advance the NSE one time step, Step 1.1: Regularize to obtain the approximation at the new time level. Previous analysis of this approach has been for specific time stepping methods in Step 1.1 and simple stabilizations in Step 1.1. In this report we extend the mathematical support for uncoupled, modular stabilization to (i) the more complex and better performing...

Numerical modelling of algebraic closure models of oceanic turbulent mixing layers

Anne-Claire Bennis, Tomas Chacón Rebollo, Macarena Gómez Mármol, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce in this paper some elements for the mathematical and numerical analysis of algebraic turbulence models for oceanic surface mixing layers. In these models the turbulent diffusions are parameterized by means of the gradient Richardson number, that measures the balance between stabilizing buoyancy forces and destabilizing shearing forces. We analyze the existence and linear exponential asymptotic stability of continuous and discrete equilibria states. We also analyze the well-posedness...

Currently displaying 1 – 2 of 2

Page 1