The Gauss center research in multiscale scientific computation.
The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.
The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.
In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the...
In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for...