The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime.
Boundary layers are generated from the fact that the incoming kinetic flux might be far
from the thermodynamical equilibrium. In [2], the authors propose a method to compute
numerically the boundary conditions in the hydrodynamic limit relying on an analysis of
the boundary layers....
We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...
We propose here a model and a numerical scheme to compute the motion
of rigid particles interacting through the lubrication force. In the
case of a particle approaching a plane, we propose an algorithm and
prove its convergence towards the solutions to the gluey particle model
described in [B. Maury, ESAIM: Proceedings18 (2007)
133–142]. We propose a multi-particle version of
this gluey model which is based on the projection of the velocities
onto a set of admissible velocities. Then, we describe...
Currently displaying 1 –
3 of
3