Statistical mechanics of the -point vortex system with random intensities on .
Mathematics Subject Classification: 26A33, 76M35, 82B31A stochastic solution is constructed for a fractional generalization of the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses a fractional generalization of the branching exponential process and propagation processes which are spectral integrals of Levy processes.
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium...
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium solution. ...
We describe several results obtained recently on stochastic nonlinear Schrödinger equations. We show that under suitable smoothness assumptions on the noise, the nonlinear Schrödinger perturbed by an additive or multiplicative noise is well posed under similar assumptions on the nonlinear term as in the deterministic theory. Then, we restrict our attention to the case of a focusing nonlinearity with critical or supercritical exponent. If the noise is additive, smooth in space and non degenerate,...