Maps and fields with compressible density
In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...
In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...
We consider hydrodynamical models describing the evolution of a gaseous star in which the presence of thermonuclear reactions between several species leads to a multicomponent formulation. In the case of binary mixtures, recent 3D results are evoked. In the one-dimensional situation, we can prove global estimates and stabilization for some simplified model.