Homogenization and two-scale convergence of the compressible Reynolds lubrication equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk surface
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...
In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...