Page 1

Displaying 1 – 5 of 5

Showing per page

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Currently displaying 1 – 5 of 5

Page 1