Page 1

Displaying 1 – 4 of 4

Showing per page

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Control of transonic shock positions

Olivier Pironneau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control of Transonic Shock Positions

Olivier Pironneau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Currently displaying 1 – 4 of 4

Page 1