Upstream weighting and mixed finite elements in the simulation of miscible displacements
This paper concerns the discretization of multiphase Darcy flows, in the case of heterogeneous anisotropic porous media and general 3D meshes used in practice to represent reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient scheme (VAG), already introduced for single phase diffusive problems in [9], to multiphase Darcy flows....
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
The complex phenomenon of solid wax deposition in wax saturated crude oils subject to thermal gradients has been treated in a number of papers under very specific assumptions (e.g. thermodynamical equilibrium between dissolved wax and the wax suspended in the oil as a crystallized phase). Here we want to consider a more general framework in which thermodynamical equilibrium may not exist, the whole system may form a gel-like structure in which the segregated solid wax has no diffusivity, the thermal...
We analyze existence and uniqueness of weak solutions to the well-posed Hele-Shaw problem under general conditions on the fixed boundaries and non-homogeneous governing equation in the unknown domain and non-homogeneous dynamic condition on the free boundary. Our approach allows us also to minimize the restrictions on the boundary and initial data. We derive several estimates on the solutions in spaces, prove a comparison theorem, and show that the solution depends continuously on the initial...