Darcy-Brinkman free convection about a wedge and a cone subjected to a mixed thermal boundary condition.
Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous problem. Uniqueness...
This paper is devoted to the study of the homogenization of a porous medium, composed of different materials arranged in a periodic structure. This provides the profile of the saturation function for the limit material.
We consider the lowest-order Raviart–Thomas mixed finite element method for second-order elliptic problems on simplicial meshes in two and three space dimensions. This method produces saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate the flux unknowns, which implies the equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. The matrix of the final linear system is sparse, positive...
A-priori estimates in weighted Hölder norms are obtained for the solutions of a one- dimensional boundary value problem for the heat equation in a domain degenerating at time t = 0 and with boundary data involving simultaneously the first order time derivative and the spatial gradient.