Page 1

Displaying 1 – 11 of 11

Showing per page

The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model

Tore Flåtten, Svend Tollak Munkejord (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Roe-type numerical scheme for approximating the solutions of a drift-flux two-phase flow model. The model incorporates a set of highly complex closure laws, and the fluxes are generally not algebraic functions of the conserved variables. Hence, the classical approach of constructing a Roe solver by means of parameter vectors is unfeasible. Alternative approaches for analytically constructing the Roe solver are discussed, and a formulation of the Roe solver valid for general closure...

The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

Christian Merkle, Christian Rohde (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...

Two phase flow arising in hydraulics

Ivan Straškraba (2015)

Applications of Mathematics

The aim of this paper is to proceed in the study of the system which will be specified below. The system concerns fluid flow in a simple hydraulic system consisting of a pipe with generator on one side and a valve or some more complicated hydraulic elements on the other end of the pipe. The purpose of the research is a rigorous mathematical analysis of the corresponding linearized system. Here, we analyze the linearized problem near the fixed steady state which already have been explicitly described....

Two-Layer Flow with One Viscous Layer in Inclined Channels

O. K. Matar, G. M. Sisoev, C. J. Lawrence (2008)

Mathematical Modelling of Natural Phenomena

We study pressure-driven, two-layer flow in inclined channels with high density and viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics. Two distinguished limits are considered: where the viscosity ratio is small with density ratios of order unity, and where both density and viscosity ratios are small. The evolution equations account for the presence of...

Currently displaying 1 – 11 of 11

Page 1