Radiation effect on MHD free-convection flow of a gas at a stretching surface with a uniform free stream.
We prove the existence and uniqueness of global strong solutions to the Cauchy problem for 3D incompressible MHD equations with nonlinear damping terms. Moreover, the preliminary L² decay for weak solutions is also established.
We study the Cauchy problem for the MHD system, and provide two regularity conditions involving horizontal components (or their gradients) in Besov spaces. This improves previous results.
Nous démontrons dans cet article que le système MHD tridimensionnel à densité et viscosité variables est localement bien posé lorsque pour et la densité initiale est proche d’une constante strictement positive. Nous démontrons également un résultat d’existence et d’unicité dans l’espace de Sobolev pour sans aucune condition de petitesse sur la densité.