A Beale-Kato-Madja criterion for magneto-micropolar fluid equations with partial viscosity.
Page 1 Next
Wang, Yu-Zhu, Hu, Liping, Wang, Yin-Xia (2011)
Boundary Value Problems [electronic only]
Sebastiano Pennisi (1993)
Annales de l'I.H.P. Physique théorique
Avner Friedman, Yong Liu (1995)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Tomasz Roliński (1995)
Annales Polonici Mathematici
We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator...
Soheili, Ali R., Naghipoor, J., Ahmadian, S.A. (2009)
Mathematical Problems in Engineering
Motsa, S.S., Shateyi, S. (2010)
Mathematical Problems in Engineering
Giovanni Cimatti (2004)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
The plane flow of a fluid obeying the equations of magnetohydrodynamics is studied under the assumption that both the viscosity and the resistivity depend on the temperature. Some results of existence, non-existence, and uniqueness of solution are proved.
Zhuan Ye (2015)
Annales Polonici Mathematici
This paper is dedicated to a regularity criterion for the 2D MHD equations and viscoelastic equations. We prove that if the magnetic field B, respectively the local deformation gradient F, satisfies for 1/p + 1/q = 1 and 2 < p ≤ ∞, then the corresponding local solution can be extended beyond time T.
Tadeusz Nadzieja, Andrzej Raczyński (1998)
Applicationes Mathematicae
Existence of radially symmetric solutions (both stationary and time dependent) for a parabolic-elliptic system describing the evolution of the spatial density of ions in an electrolyte is studied.
Layton, W.J., Meir, A.J., Schmidt, P.G. (1997)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Manuel Núñez, Jesús Rojo (1993)
Applications of Mathematics
Small perturbations of an equilibrium plasma satisfy the linearized magnetohydrodynamics equations. These form a mixed elliptic-hyperbolic system that in a straight-field geometry and for a fixed time frequency may be reduced to a single scalar equation div, where may have singularities in the domaind of definition. We study the case when is a half-plane and possesses high Fourier components, analyzing the changes brought about by the singularity . We show that absorptions of energy takes...
David Gérard-Varet, Emmanuel Grenier (2002)
RACSAM
In meteorology and magnetohydrodynamics many different boundary layers appear. Some of them are already mathematically well known, like Ekman or Hartmann layers. Others remain unstudied, and can be much more complex. The aim of this paper is to give a simple and unified presentation of the main boundary layers, and to propose a simple method to derive their sizes and equations.
Gerhard Ströhmer (1992)
Mathematische Zeitschrift
Piotr Kacprzyk (2004)
Applicationes Mathematicae
Almost global in time existence of solutions for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surfaced is proved. In the exterior domain we have an electromagnetic field which is generated by some currents which are located on a fixed boundary. We prove that a solution exists for t ∈ (0,T), where T > 0 is large if the data are small.
Gérard A. Maugin (1972)
Annales de l'I.H.P. Physique théorique
R. Mennicken, M. Faierman, M. Möller (1993)
Manuscripta mathematica
Gerhard Ströhmer (1993)
Mathematische Zeitschrift
Picard, R. (1996)
Journal of Applied Analysis
Jacques Rappaz (1984)
Numerische Mathematik
J. Rappaz (1977)
Numerische Mathematik
Page 1 Next