Finite element approximation of a free boundary problem arising in the theory of liquid drops ans plasma physics
This paper deals with the design of finite volume approximation of hyperbolic conservation laws in curvilinear coordinates. Such coordinates are encountered naturally in many problems as for instance in the analysis of a large number of models coming from magnetic confinement fusion in tokamaks. In this paper we derive a new finite volume method for hyperbolic conservation laws in curvilinear coordinates. The method is first described in a general...
We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...
We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...