A free boundary problem arising in magnetohydrodynamic system
The aim of this work is to establish, from a mathematical point of view, the limit α → +∞ in the system where . This corresponds to an approximation which is made in the context of Langmuir turbulence in plasma Physics. The L2-subcritical σ (that is σ ≤ 2/3) and the H1-subcritical σ (that is σ ≤ 2) are studied. In the physical case σ = 1, the limit is then studied for the norm.
This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.
Žemlička, Jan: Structure of steady rings. Zemek, Martin: On some aspects of subdifferentiality of functions on Banach spaces. Hlubinka, Daniel: Construction of Markov kernels with application for moment problem solution. Somberg, Petr: Properties of the BGG resolution on the spheres. Krump, Lukáš: Construction of Bernstein-Gelfand-Gelfand for almost hermitian symmetric structures. Kolář, Jan: Simultaneous extension operators. Porosity.
Nel presente lavoro si fanno alcune osservazioni sulle onde magnetoacustiche. Esse, per quanto è a conoscenza dell'autore, non sono presenti nella vastissima letteratura sull'argomento; nonostante la loro semplicità, è sembrato di un qualche interesse segnalarle esplicitamente per il loro contenuto fisico. Specificatamente riguardano: l'effetto Doppler; la quantità di moto; il carattere di onde di condensazione; il carattere conservativo del campo di forza magnetica; l'equipartizione dell'energia....
The present work is devoted to the simulation of a strongly magnetized plasma as a mixture of an ion fluid and an electron fluid. For simplicity reasons, we assume that each fluid is isothermal and is modelized by Euler equations coupled with a term representing the Lorentz force, and we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form ni = ne. The numerical method which is described in the...