Page 1

Displaying 1 – 2 of 2

Showing per page

Segregation of Flowing Blood: Mathematical Description

A. Tokarev, G. Panasenko, F. Ataullakhanov (2011)

Mathematical Modelling of Natural Phenomena

Blood rheology is completely determined by its major corpuscles which are erythrocytes, or red blood cells (RBCs). That is why understanding and correct mathematical description of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and non-uniform radial distribution affect the passage of blood through the vessels. Hence, they have...

Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model

T. Bodnár, K.R. Rajagopal, A. Sequeira (2011)

Mathematical Modelling of Natural Phenomena

This paper is concerned with the numerical simulation of a thermodynamically compatible viscoelastic shear-thinning fluid model, particularly well suited to describe the rheological response of blood, under physiological conditions. Numerical simulations are performed in two idealized three-dimensional geometries, a stenosis and a curved vessel, to investigate the combined effects of flow inertia, viscosity and viscoelasticity in these geometries....

Currently displaying 1 – 2 of 2

Page 1