Page 1

Displaying 1 – 5 of 5

Showing per page

Calculation of the magnetic field due to a bioelectric current dipole in an ellipsoid

Andrei Irimia (2008)

Applications of Mathematics

The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field 𝐁 due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics 𝔼 n m , which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math....

Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime

Hoai-Minh Nguyen (2015)

Journal of the European Mathematical Society

This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic structures in the two-dimensional quasistatic regime. Two key features of this phenomenon are the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others, and the connection between the localized resonance...

Consistent models for electrical networks with distributed parameters

Corneliu A. Marinov, Gheorghe Moroşanu (1992)

Mathematica Bohemica

A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form L 2 ( 0 , T ; H 1 ) , one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.

Currently displaying 1 – 5 of 5

Page 1