The search session has expired. Please query the service again.
Since matrix compression has paved the way for discretizing the boundary integral
equation formulations of electromagnetics scattering on very fine meshes, preconditioners
for the resulting linear systems have become key to efficient simulations. Operator
preconditioning based on Calderón identities has proved to be a powerful device for
devising preconditioners. However, this is not possible for the usual first-kind boundary
formulations for electromagnetic...
Since matrix compression has paved the way for discretizing the boundary integral
equation formulations of electromagnetics scattering on very fine meshes, preconditioners
for the resulting linear systems have become key to efficient simulations. Operator
preconditioning based on Calderón identities has proved to be a powerful device for
devising preconditioners. However, this is not possible for the usual first-kind boundary
formulations for electromagnetic...
Dorsey, Di Bartolo and Dolgert (Di Bartolo et al., 1996; 1997) have constructed asymptotic matched solutions at order two for the half-space Ginzburg-Landau model, in the weak- limit. These authors deduced a formal expansion for the superheating field in powers of up to order four, extending the formula by De Gennes (De Gennes, 1966) and the two terms in Parr’s formula (Parr, 1976). In this paper, we construct asymptotic matched solutions at all orders leading to a complete expansion in powers...
Dorsey, Di Bartolo and Dolgert (Di Bartolo et al., 1996; 1997) have constructed
asymptotic matched solutions at order two for the half-space Ginzburg-Landau model,
in the weak-κ limit.
These authors deduced
a formal expansion for the superheating field in powers of up to
order four, extending the formula by De Gennes (De Gennes, 1966) and the two terms in
Parr's formula (Parr, 1976). In this paper, we construct asymptotic matched solutions
at all orders
leading to a complete expansion...
Currently displaying 1 –
8 of
8