Previous Page 5

Displaying 81 – 97 of 97

Showing per page

On the theory of the 4-quasiplanar mappings of almost quaternionic spaces

Mikeš, Josef, Němčíková, Jana, Pokorná, Olga (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

Authors’ abstract: “4-quasiplanar mappings of almost quaternionic spaces with affine connection without torsion are investigated. Geometrically motivated definitions of these mappings are presented. Based an these definitions, fundamental forms of these mappings are found, which are equivalent to the forms of 4-quasiplanar mappings introduced a priori by I. Kurbatova [Sov. Math. 30, 100-104 (1986; Zbl 0602.53029)]”.

Peak functions on convex domains

Kolář, Martin (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let Ω n be a domain with smooth boundary and p Ω . A holomorphic function f on Ω is called a C k ( k = 0 , 1 , 2 , ) peak function at p if f C k ( Ω ¯ ) , f ( p ) = 1 , and | f ( q ) | < 1 for all q Ω ¯ { p } . If Ω is strongly pseudoconvex, then C peak functions exist. On the other hand, J. E. Fornaess constructed an example in 2 to show that this result fails, even for C 1 functions, on a weakly pseudoconvex domain [Math. Ann. 227, 173-175 (1977; Zbl 0346.32026)]. Subsequently, E. Bedford and J. E. Fornaess showed that there is always a continuous peak function on a...

Remarks on CR-manifolds of codimension 2 in C 4

Schmalz, Gerd (1999)

Proceedings of the 18th Winter School "Geometry and Physics"

The aim of the article is to give a conceptual understanding of Kontsevich’s construction of the universal element of the cohomology of the coarse moduli space of smooth algebraic curves with given genus and punctures. In a first step the author presents a toy model of tree graphs coloured by an operad 𝒫 for which the graph complex and the universal cycle will be constructed. The universal cycle has coefficients in the operad for Ω ( 𝒫 * ) -algebras with trivial differential over the (dual) cobar construction...

Space-time decompositions via differential forms

Fecko, Marián (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

The author presents a simple method (by using the standard theory of connections on principle bundles) of ( 3 + 1 ) -decomposition of the physical equations written in terms of differential forms on a 4-dimensional spacetime of general relativity, with respect to a general observer. Finally, the author suggests possible applications of such a decomposition to the Maxwell theory.

Spectral theory of invariant operators, sharp inequalities, and representation theory

Branson, Thomas (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The paper represents the lectures given by the author at the 16th Winter School on Geometry and Physics, Srni, Czech Republic, January 13-20, 1996. He develops in an elegant manner the theory of conformal covariants and the theory of functional determinant which is canonically associated to an elliptic operator on a compact pseudo-Riemannian manifold. The presentation is excellently realized with a lot of details, examples and open problems.

Spinor equations in Weyl geometry

Buchholz, Volker (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

This paper deals with Dirac, twistor and Killing equations on Weyl manifolds with C -spin structures. A conformal Schrödinger-Lichnerowicz formula is presented and used to derive integrability conditions for these equations. It is shown that the only non-closed Weyl manifolds of dimension greater than 3 that admit solutions of the real Killing equation are 4-dimensional and non-compact. Any Weyl manifold of dimension greater than 3, that admits a real Killing spinor has to be Einstein-Weyl.

Symmetric algebras and Yang-Baxter equation

Beidar, K., Fong, Y., Stolin, A. (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

Let U be an open subset of the complex plane, and let L denote a finite-dimensional complex simple Lie algebra. A. A. Belavin and V. G. Drinfel’d investigated non-degenerate meromorphic functions from U × U into L L which are solutions of the classical Yang-Baxter equation [Funct. Anal. Appl. 16, 159-180 (1983; Zbl 0504.22016)]. They found that (up to equivalence) the solutions depend only on the difference of the two variables and that their set of poles forms a discrete (additive) subgroup Γ of the...

Symplectic solution supermanifolds in field theory

Schmitt, T. (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.

The approximate symmetries of the vacuum Einstein equations

Tiller, Petr (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

The author reviews the theory of approximate infinitesimal symmetries of partial differential equations. Based on this and on Ibragimov's result on the general symmetries of the vacuum Einstein equation, he proposes a method to calculate approximate symmetries of the non-vacuum Einstein equation: the energy-momentum tensor is treated like a perturbation.

The iterated version of a translative integral formula for sets of positive reach

Rataj, Jan (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

By taking into account the work of J. Rataj and M. Zähle [Geom. Dedicata 57, 259-283 (1995; Zbl 0844.53050)], R. Schneider and W. Weil [Math. Nachr. 129, 67-80 (1986; Zbl 0602.52003)], W. Weil [Math. Z. 205, 531-549 (1990; Zbl 0705.52006)], an integral formula is obtained here by using the technique of rectifiable currents.This is an iterated version of the principal kinematic formula for q sets of positive reach and generalized curvature measures.

Torsions of connections on tangent bundles of higher order

Kureš, Miroslav (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

The torsions of a general connection Γ on the r th-order tangent bundle of a manifold M are defined as the Frölicher-Nijenhuis bracket of Γ with the natural affinors. The author deduces the basic properties of these torsions. Then he compares them with the classical torsion of a principal connection on the r th-order frame bundle of M .

Twistor operators on conformally flat spaces

Somberg, Petr (2001)

Proceedings of the 20th Winter School "Geometry and Physics"

Summary: We describe explicitly the kernels of higher spin twistor operators on standard even dimensional Euclidean space 2 l , standard even dimensional sphere S 2 l , and standard even dimensional hyperbolic space 2 l , using realizations of invariant differential operators inside spinor valued differential forms. The kernels are finite dimensional vector spaces (of the same cardinality) generated by spinor valued polynomials on 2 l , S 2 l , 2 l .

Volume and area renormalizations for conformally compact Einstein metrics

Graham, Robin C. (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let X be the interior of a compact manifold X ¯ of dimension n + 1 with boundary M = X , and g + be a conformally compact metric on X , namely g ¯ r 2 g + extends continuously (or with some degree of smoothness) as a metric to X , where r denotes a defining function for M , i.e. r > 0 on X and r = 0 , d r 0 on M . The restrction of g ¯ to T M rescales upon changing r , so defines invariantly a conformal class of metrics on M , which is called the conformal infinity of g + . In the present paper, the author considers conformally compact metrics...

Weyl algebra and a realization of the unitary symmetry

Strasburger, Aleksander (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

In the paper the origins of the intrinsic unitary symmetry encountered in the study of bosonic systems with finite degrees of freedom and its relations with the Weyl algebra (1979, Jacobson) generated by the quantum canonical commutation relations are presented. An analytical representation of the Weyl algebra formulated in terms of partial differential operators with polynomial coefficients is studied in detail. As a basic example, the symmetry properties of the d -dimensional quantum harmonic oscillator...

Currently displaying 81 – 97 of 97

Previous Page 5