The Cauchy-Riemann equations in anticomuting variables
Page 1
Hrubý, J. (1981)
Abstracta. 9th Winter School on Abstract Analysis
Popowicz, Ziemowit (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Salgado, Gil, Vallejo-Rodríguez, José A. (2009)
Advances in Mathematical Physics
Mezincescu, Luca, Townsend, Paul K. (2011)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Michael Hitrik (2013)
Journées Équations aux dérivées partielles
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths,...
González León, M.A., Mateos Guilarte, J., de la Torre Mayado, M. (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Page 1